899 research outputs found

    Tribological characterisation of magnetron sputtered Ti(C, O, N) thin films

    Get PDF
    Ti(C, O, N) thin films were prepared by magnetron sputtering and analysed in terms of their tribological properties. Surface and tribological parameters were analysed and discussed as a function of the films composition and structural features, as well as their thickness. The evolution of friction coefficient values was in concordance with the wear behaviour of the films. According to the atomic composition of the films, an increasing of the carbon percentage and a compound chemical formula closed to the stoichiometric TiC lead to a very good wear behaviour. This aspect is also directly correlated with the friction behaviour.Fundação para a Ciência e Tecnologia (FCT) SFRH/BPD/27114/2006 e PTDC/CTM/69362/200

    What is the best method to calculate the solar wind propagation delay?

    Get PDF
    We present a statistical study of propagation times of solar wind discontinuities between Advanced Composition Explorer (ACE) spacecraft orbiting the L1 libration point and the Cluster quartet of spacecraft near the Earth's magnetopause. The propagation times for almost 200 events are compared with the predicted times from four different models. The simplest model assumes a constant convective motion of solar wind disturbances along the Sun-Earth line, whereas more sophisticated models take the orientation of the discontinuity as well as the real positions of the solar wind monitor and target into account. The results show that taking orientation and real position of the solar wind monitor and target into account gives a more precise time delay estimation in most cases. In particular, we show that recent modifications to the minimum variance technique can improve the estimation of propagation times of solar wind discontinuities

    A Note on Doubly Warped Product Contact CR-Submanifolds in trans-Sasakian Manifolds

    Full text link
    Warped product CR-submanifolds in Kaehlerian manifolds were intensively studied only since 2001 after the impulse given by B.Y. Chen. Immediately after, another line of research, similar to that concerning Sasakian geometry as the odd dimensional version of Kaehlerian geometry, was developed, namely warped product contact CR-submanifolds in Sasakian manifolds. In this note we proved that there exists no proper doubly warped product contact CR-submanifolds in trans-Sasakian manifolds.Comment: 5 Latex page

    Photoluminescence Detected Doublet Structure in the Integer and Fractional Quantum Hall Regime

    Get PDF
    We present here the results of polarized magneto-photoluminescence measurements on a high mobility single-heterojunction. The presence of a doublet structure over a large magnetic field range (2>nu>1/6) is interpreted as possible evidence for the existence of a magneto-roton minima of the charged density waves. This is understood as an indication of strong electronic correlation even in the case of the IQHE limit.Comment: submitted to Solid State Communication

    Performant DLC Films with Enhanced Wear Resistance

    Get PDF
    Diamond-like Carbon (DLC) coatings represent an interesting research subject for various groups of researchers having interests in surfaces tribology and corrosion. This paper discusses issues relating to the friction and mechanical behaviour, for 4 types of DLC coating systems deposited on heat treatable steel hardened and high-tempered (a multilayer of WC/C (a-C:H:W); CrC+a-C:H, a single layer of a-C:H, plasma nitriding + Si doped DLC (PN+Si-a-C:H). These films were synthesized using a single or a combined process consisting in either r. f. reactive magnetron sputtering or/followed by Plasma Assisted Chemical Vapour Deposition (PACVD). The tribological properties (friction coefficient) were obtained and discussed in correlation with the mechanical properties (the adherence, the nanoindentation hardness) and thickness When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/3491

    Coulomb Driven New Bound States at the Integer Quantum Hall States in GaAs/Al(0.3)Ga(0.7)As Single Heterojunctions

    Full text link
    Coulomb driven, magneto-optically induced electron and hole bound states from a series of heavily doped GaAs/Al(0.3)Ga(0.7)As single heterojunctions (SHJ) are revealed in high magnetic fields. At low magnetic fields (nu > 2), the photoluminescence spectra display Shubnikov de-Haas type oscillations associated with the empty second subband transition. In the regime of the Landau filling factor nu < 1 and 1 < nu <2, we found strong bound states due to Mott type localizations. Since a SHJ has an open valence band structure, these bound states are a unique property of the dynamic movement of the valence holes in strong magnetic fields

    Pelvic floor disorders in gynecological malignancies. An overlooked problem?

    Get PDF
    Cervical, endometrial, ovarian, vulvar, and vaginal cancers affect women of a broad age spectrum. Many of these women are still sexually active when their cancer is diagnosed. Treatment options for gynecological malignancies, such as gynecological surgery, radiation, and chemotherapy, are proven risk factors for pelvic floor dysfunction. The prevalence of urinary incontinence, fecal incontinence, and sexual dysfunction before cancer treatment is still unclear. Hypotheses have been raised in the literature that these manifestations could represent early symptoms of pelvic cancers, but most remain overlooked even in cancer surviving patients. The primary focus of therapy is always cancer eradication, but as oncological and surgical treatment options become more successful, the number of cancer survivors increases. The quality of life of patients with gynecological cancers often remains an underrated subject. Pelvic floor disorders are not consistently reported by patients and are frequently overlooked by many clinicians. In this brief review we discuss the importance of pelvic floor dysfunction in patients with gynecological malignant tumors

    Polylactic acid (PLA)/Silver-NP/VitaminE bionanocomposite electrospun nanofibers with antibacterial and antioxidant activity

    Get PDF
    Cataloged from PDF version of article.The antibacterial property of silver nanoparticles (Ag-NPs) and the antioxidant activity of Vitamin E have been combined by incorporation of these two active components within polylactic acid (PLA) nanofibers via electrospinning (PLA/Ag-NP/VitaminE nanofibers). The morphological and structural characterizations of PLA/Ag-NP/VitaminE nanofibers were performed by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy and X-ray diffraction. The average fiber diameter was 140 ± 60 nm, and the size of the Ag-NP was 2.7 ± 1.5 nm. PLA/Ag-NP/VitaminE nanofibers inhibited growth of Escherichia coli, Listeria monocytogenes and Salmonella typhymurium up to 100 %. The amount of released Ag ions from the nanofibers immersed in aqueous solution was determined by Inductively Coupled Plasma Mass Spectrometry, and it has been observed that the release of Ag ions was kept approximately constant after 10 days of immersion. The antioxidant activity of PLA/Ag-NP/VitaminE nanofibers was evaluated according to DPPH (2,2-diphenyl-1-picrylhydrazyl) method and determined as 94 %. The results of the tests on fresh apple and apple juice indicated that the PLA/Ag/VitaminE nanofiber membrane actively reduced the polyphenol oxidase activity. The multifunctional electrospun PLA nanofibers incorporating Ag-NP and Vitamin E may be quite applicable in food packaging due to the extremely large surface area of nanofibers along with antibacterial and antioxidant activities. These materials could find application in food industry as a potential preservative packaging for fruits and juices. © 2014, Springer Science+Business Media Dordrecht

    фольклорно-етнографічні матеріали на сторінках журналу «Основа»

    Get PDF
    In the article folk and ethnographical materials of the «Osnova» magazine are analyzed. The role of this edition in development of the ethnography is defined

    Ti–Si–C thin films produced by magnetron sputtering : correlation between physical properties, mechanical properties and tribological behavior

    Get PDF
    Ti–Si–C thin films were deposited onto silicon, stainless steel and high-speed steel substrates by magnetron sputtering, using different chamber configurations. The composition of the produced films was obtained by Electron Probe Micro-Analysis (EPMA) and the structure by X-ray diffraction (XRD). The hardness and residual stresses were obtained by depth-sensing indentation and substrate deflection measurements (using Stoney’s equation), respectively. The tribological behavior of the produced films was studied by pin-on-disc. The increase of the concentration of non-metallic elements (carbon and silicon) caused significant changes in their properties. Structural analysis revealed the possibility of the coexistence of different phases in the prepared films, namely Ti metallic phase ( alpha-Ti or beta-Ti) in the films with higher Ti content. The coatings with highest carbon contents, exhibited mainly a sub-stoichiometric fcc NaCl TiC-type structure. These structural changes were also confirmed by resistivity measurements, whose values ranged from 10E3 Ohm/sq for low non-metal concentration, up to 10E6 Ohm /sq for the highest metalloid concentration. Astrong increase of hardness and residual stresses was observed with the increase of the non-metal concentration in the films. The hardness (H) values ranged between 11 and 27 GPa, with a clear dependence on both crystalline structure and composition features. Following the mechanical behavior, the tribological results showed similar trends, with both friction coefficients and wear revealing also a straight correlation with the composition and crystalline structure of the coatings
    corecore